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A detailed analysis has been carried out of the strength and fatigue behaviour un-
der constant-stress cycling of four modern aerospace CFRP laminates, all having
the common lay-up [(±45, 02)2]S. Despite some important differences in their ba-
sic material characteristics, the fatigue responses of the four materials were similar.
This pattern of behaviour has resulted in the development of a descriptive model
of constant-life fatigue which has then been used as the basis for a life-prediction
procedure. Preliminary attempts at validation of the method have met with a rea-
sonable degree of success and suggest that it could provide designers with a means
of selecting newly developed composites for fatigue applications on the basis of far
less experimental data than are currently needed for confidence in design.

1. Introduction

Increased exploitation of fibre composites in aerospace and automotive engineering
offers significant benefits, among which we may include improved stiffness-to-weight
ratio, strength-to-weight ratio and toughness or impact resistance as the most impor-
tant among the group of mechanical properties and, in appropriate cases, reduced
overall cost as the main commercially important factor. In combination, some or
all of these benefits provide strong driving forces for a manufacturing company to
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Figure 1. Stress–median-life curves at a stress ratio R = +0.1 for seven varieties of carbon-fibre
composite of lay-up [(±45, 02)2]S.

re-evaluate its designs and its production processes. For applications requiring long-
term stability, whether it be thermal, mechanical or chemical, the decision to make
a switch from conventional metallic systems to polymer-based composites may cause
great difficulty because the information on which to base new designs may be either
partly or totally lacking.

Fatigue is of particular concern to designers working on load-bearing applications
where variable stresses are present. Also, while it is true that fatigue studies have been
carried out on composites since these materials first began to be studied as serious
engineering materials, it is still by no means possible to make safe predictions for
materials which have not previously been the subject of extensive investigation. An
example will illustrate this. There is a familiar postulate, referred to as the strength-
life equal-rank assumption, which supposes that if a series of composite materials
are ranked according to their tensile strengths, then their fatigue responses will be
similarly ranked. The danger of this can be seen from the group of stress–median-
life (σ/ logNf) curves for a range of carbon-fibre composites consisting of various
combinations of fibres and resins, but of similar lay-ups (namely, [(±45, 02)2]S) shown
in figure 1. It can be seen that the σ/ logNf curves are of different shapes; that there
is no obvious pattern of responses that can be linked to specific fibre types and that
the resin matrix exerts stronger effects, in modifying the apparent performance of
a given variety of fibre, than might have been expected. The individual curves also
sometimes cross and recross, which means that the strength/life assumption cannot
be valid. This is emphasized by looking specifically at fatigue stresses for given lives
or, equivalently, fatigue lives for selected cyclic stresses. While there is a general
trend that higher strength laminates have longer fatigue lives, in detail it would be
unsafe to rely on such a crude ranking procedure.

Another defect in the ranking model is that it attempts to relate only tensile
strength to fatigue life; it gives no clues as to how a given material might behave
under compression or combined tension–compression fatigue. It is known that the
compression strength of a composite laminate will usually be much lower than its
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Table 1. Ratio of compression strength to tensile strength, σc/σt, for some CFRP laminates of
[(±45, 02)2]S construction

material σc/σt

HTA/913 0.77
T800/924 0.63
IM7/977 0.64
T800/5254 0.53

tensile strength, but it is by no means clear that there is a simple relationship between
the two, as illustrated in table 1 for some of the composites represented in figure 1.

Fatigue experiments are expensive of time and resources. When a newly devel-
oped composite material is being considered for a given application, fatigue data are
ideally required at an early stage of the design process and yet a detailed fatigue
profile is seldom available until late in the development of a project. There has been
a great deal of research on methods of life prediction for composites and recent re-
views of various models can be found, for example, in Reifsnider (1991). But few
existing models are readily applicable to a wide range of materials and realistic ap-
plications and components. Any generally useful model should have the capability
for conservative prediction, with appropriate statistical safeguards, from as small an
experimental data base as possible, and with the ability to upgrade its predictions
smoothly as new fatigue data become available. In this paper, we describe ideas re-
lating to a model that we have developed over a number of years and which appears
to be applicable to a variety of kinds of composite laminate.

In a recent paper (Gathercole et al. 1994), we examined the constant-stress-
amplitude fatigue response of a T800/5245 composite laminate consisting of a high-
failure-strain carbon fibre in a toughened bismaleimide resin with a [(±45, 02)2]S
lay-up. Stress–life curves were presented for a range of stress ratios (R = σmin/σmax)
from repeated tension to repeated compression and, from these data, parametric
constant-life curves were derived which provided an empirical relationship between
the alternating and mean components of stress which can be used for design pur-
poses. A limited comparison with results for some early laminate materials, XAS-
carbon/epoxy, Kevlar-49/epoxy and hybrids of the two, in unidirectional lay-up,
suggested that the procedure may have some general level of validity (Adam et al.
1986, 1989; Fernando et al. 1988). In continuing this work, we have examined a
wider range of composites with a view to assessing the potential usefulness of the
technique and the level of confidence that a designer using it might have in making
preliminary predictions of life from limited data sets. In this paper, further results
are presented for three other modern carbon-fibre-reinforced plastics (CFRP), all of
the same [(±45, 02)2]S lay-up as the T800/5245 laminate discussed by Gathercole
et al. (1994). The parameters of the constant-life relationship for all five of these
laminates are compared and an illustration is given of how the method may be used
for life prediction.

This paper does not attempt to address the problems of understanding the mi-
crostructural mechanisms of fatigue failure in composite materials. For physical in-
sight leading to the development of improved materials, it is clear that this will always
be necessary. From the point of view of the designer, however, it is not necessary.
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Table 2. Experimental materials and their sources
(Note: 924 resin is similar to 6376 (also produced by Ciba), to which occasional reference is
made in this paper.)

material fibre matrix supplier

HTA/913 ENKA high strength, BSL 913 standard Ciba–Geigy (UK)
standard modulus Tenax fibre epoxy (low-T cure)

T800/5245 Toray intermediate modulus, Narmco BASF (Europe)
high failure strain epoxy/bis-maleimide

T800/924 Toray intermediate modulus, Ciba 924 high-strain, Ciba–Geigy (UK)
high failure strain toughened epoxy

(high-T cure)

IM7/977 Hercules intermediate modulus, 977 modified epoxy Fiberite (Europe)
high failure strain

2. Materials and testing procedures

(a ) Experimental materials
The three laminates for which new results are discussed in this paper are the

carbon-fibre composites HTA/913, T800/924 and IM7/977. Details of these mate-
rials, together with relevant information for the T800/5245 studied by Gathercole
et al. (1994), are given in table 2. Within this group there is one representative of
the older-established variety of composite, HTA/913, which is similar in many re-
spects to the T300/913 that has been the subject of many research programmes.
The higher-performance fibres, T800 and IM7, have similar character but are em-
bedded in quite different resins. Among these four laminates, therefore, we have the
opportunity to investigate the specific effects of fibre and resin characteristics on the
fatigue performance of the composite and on the applicability of the life-prediction
model which we are presenting. Brief mention will also be made of results obtained
for a second material reinforced with HTA fibres, in this case in an alternative 982
resin, used in some cases as a substitute for HTA/913.

The composite prepregs were all notionally zero-bleed materials and the final 16-
ply [(±45, 02)2]S laminates, autoclaved according to the suppliers’ recommendations,
were of nominal fibre volume fractions, Vf , between 0.65 and 0.69 and of thickness
approximately 3 mm. Test pieces for strength and fatigue tests were cut to nominal
dimensions of 200 mm × 20 mm with a water-cooled diamond saw. Regions near to
plate edges and defective areas identified by C-scanning were excluded from the test
programme. The cut edges of samples were lightly polished and, after abrasion of
the end surfaces, end tabs of 1.6 mm thick soft aluminium were glued on with Ciba–
Geigy Redux 403 epoxy-resin paste. The adhesive was cured in a dry oven at 40 ◦C
for 24 h. The central gauge sections of the test samples were 100 mm long.

(b ) Testing procedures
Fatigue tests were carried out in Instron 1300 series servo-hydraulic machines ca-

pable of constant load (±100 kN) or constant deflexion (±50 mm) cycling. Testing
was carried out at frequencies between about 2 and 10 Hz. A programmable signal
generator and analyser (SArGen, by Marandy Instruments, Bath, UK) directs a volt-
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Table 3. Mechanical properties of experimental CFRP laminates
(Note: standard deviations in brackets.)

material︷ ︸︸ ︷
property HTA/913 T800/5254 T800/924 IM7/977

tensile strength, GPa 1.27 (0.05) 1.67 (0.09) 1.42 (0.09) 1.43 (0.07)
tensile modulus, GPa 69.8 (4.4) 94.0 (3.1) 92.0 (8.0) 90.2 (11.3)
failure strain, % 1.7 (0.1) 1.7 (0.1) 1.5 (0.1) 1.5 (0.1)
compression strength, GPa 0.97 (0.08) 0.88 (0.10) 0.90 (0.090) 0.90 (0.07)

age to the fatigue machine actuator (±10 V maximum range, tension-compression),
by-passing the machine’s internal signal generator. Outputs from load cell or strain
sensors are returned to the generator, recorded, and compared with preset levels, the
output control signal to the actuator then being adjusted, as necessary, to ensure
that the two remain coincident. A Macintosh computer acts as a user interface which
supervises SArGen and stores data on hard disc.

In constant-amplitude fatigue testing, the required frequency and maximum and
minimum levels of the load cycle are inputs to the Macintosh. A D/A converter in the
SArGen converts this information into a sinusoidal voltage signal which is directed
to the Instron actuator. The load-cell output signal (and up to three additional
output signals) are directed to an A/D converter in the SArGen and these signals
are converted to 180 data points per cycle. The load maxima and minima are recorded
and if the averages of five consecutive maxima and minima are different from preset
values (for example, as a result of changing specimen compliance) the output signal
to the actuator is adjusted. Converted output signals are directed to the Macintosh
where maximum and minimum load values and the number of cycles are written to
disc if the extreme values differ from previous values by more than a set amount
(say, 1% full scale).

Tension and compression strength tests were carried out in the same servo-
hydraulic testing machines as were used for the fatigue experiments at strain rates
of approximately 1.5×10−4 s−1 in tension and 1×10−4 s−1 in compression. For com-
pression tests anti-buckling guides of the kind described by Curtis (1988) were used.
Elastic modulus values were obtained by means of clip-on strain gauges.

3. Experimental results

(a ) Mechanical properties
The mechanical strength and stiffness characteristics of the four laminates are

summarized in table 3. It can be seen that the tensile moduli of the T800/5245,
T800/924 and IM7/977 materials are all alike, the average value being about 92 GPa,
whereas that of the HTA/913 composite is only about 75% of this level. The IM7/977
composite, with a reinforcing fibre not unlike the T800, is closer to T800/924 in
mechanical behaviour than to T800/5245.

By contrast, the compression strengths of the two T800 composites and the IM7
material show much more homogeneous behaviour. The HTA/913 material, surpris-

Phil. Trans. R. Soc. Lond. A (1997)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


1264 B. Harris and others

0 2 4 6 8
–1.0

0

1.0

2.0
T800/5245

Median life, m(Nf) cycles

P
ea

k 
st

re
ss

,  
G

P
a

0 2 4 6 8
–1.0

0

1.0

2.0
T800/924

0 2 4 6 8
–1.0

0

1.0

2.0

IM7/977

0 2 4 6 8
–1.0

0

1.0

2.0

 R = +0.1
 R = –0.3
 R = –1.0
 R = –1.5
 R = +10

HTA/913

Figure 2. Stress–median-life data for four CFRP laminates of [(±45, 02)2]S construction at five
R ratios. The data for T800/5245 are taken from Gathercole et al. (1994).

ingly, possesses a slightly higher compression strength than the other materials. Per-
haps the most significant aspect of the results in table 3 is the fact that major differ-
ences in fibre tensile properties and matrix characteristics exert almost no influence
on the compression resistance of these laminates.

(b ) Constant-stress fatigue response
Replicate stress–life data for the three new laminates were obtained at the five R

ratios +0.1, −0.3, −1.0, −1.5 and +10. In view of the consensus of opinion relating
to the representation of data from stress–life tests in terms of the median fatigue
lives, m(Nf), rather than mean values (Johnson 1964; Little & Jebe 1975; Spindel &
Haibach 1981; Young & Eckvall 1981), we have previously used the same approach
and we continue to use it for the purpose of this analysis. Later in this paper, however,
we give further thought to the significance of the median and other life parameters.
The stress–median-life curves derived from the raw experimental data, including, for
completeness, the results for T800/5245 from the previous publication, are plotted
in figure 2. It is impracticable in a paper covering such a wide range of materials, R
ratios and stress levels to include all test data, but some reference to scatter, etc.,
will be made later. The curves fitted through the data for the T800/5245 laminate
are best-fit third-order polynomial curves and are shown as an indication of how
data analysis may be carried out. The fitting of curves in this way does not indicate
insight into the mechanisms of fatigue failure.

In our previous work with the [(±45, 02)2]S T800/5245 composite, we observed
that the σ/ logNf data points for R = +0.1 and −0.3 appeared to fall on a curve
that extrapolated smoothly back to the monotonic tensile strength of the laminate,
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Figure 3. Comparison of fatigue results for the four CFRP laminates at three R ratios.

while those for R = +10 could be extrapolated smoothly back to the monotonic com-
pression strength (measured in the same compression-test jig). It appeared, however,
that the data points for R ratios of −1.0 and −1.5 were not associated in this way
with the tensile strength, as shown by the curves drawn through those points for the
T800/5245 laminate in figure 2. We concluded that the dominant mode of failure had
effectively changed from being predominantly tensile as a result of the substantial
compression stress component involved in cycling at R = −1.0 and −1.5, although
it was not possible to find supporting microstructural evidence of the damage that
could have been expected to accompany such a marked change. It appears from an
examination of figure 2, however, that our interpretation of the T800/5245 results
in isolation was hasty since the data points for all three of the newly investigated
laminates at R = −1.0 and −1.5 may be extrapolated back to the tensile strengths
of the laminate in question.

More direct comparisons of the four laminates may be made by replotting selected
data. In figure 3, for example, are superposed the data for the four experimental
laminates at R ratios +0.1, −1.0 and +10. It can be seen that the data sets for
R = +10 and −1 for all four materials are largely overlapping and, although not
shown in figure 3, the same is true for R = −1.5. Thus, it is only their behaviour
under repeated tension cycling that distinguishes the fatigue response of these four
materials, despite their obvious material differences.

4. Discussion

(a ) Statistical aspects of strength
Weibull analysis reveals some further distinctions between the tensile strengths of

the four laminates, as is discernible from the two-parameter Weibull plots shown in
figure 4. The cumulative distribution function, FW, represented in this figure is, of
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Figure 4. Two-parameter Weibull plots of tensile strength data for four CFRP laminates.

course, the familiar form of the type III model

FW(x; b,m) = 1− exp
[
−
(x
b

)m ]
, (4.1)

where m is the shape parameter (or Weibull modulus) and b is the scale parameter.
The shape parameters for the four data sets are all of the order of 20 and, although
they show differences which suggest, for example, a higher level of variability in the
T800/924 laminate than in the other three, inspection of the plots in figure 4 indicates
that the differences may not be real. The data sets for T800/924 and IM7/977 are
largely coincident and it can be seen that that the strengths of the T800/5245 and
the HTA/913 are, respectively, significantly greater than and lower than those of the
IM7/977 and the T800/924 composites. The rather surprising difference between the
strengths of the two T800 materials must be due, it is supposed, to different levels
of fibre/resin adhesion. The IM7/977 composite, with a reinforcing fibre not unlike
the T800, is also apparently closer to T800/924 in mechanical behaviour than to the
T800/5245.

It is frequently argued from a mechanistic point of view that the use of the two-
parameter Weibull model (equation (4.1)) to represent data for mechanical strength
must be invalid, since it makes the assumption that there is no finite stress level
at which there is zero probability of failure, and that the only valid form of the
statistical model must be the three-parameter model

FW(x; a, b,m) = 1− exp
[
−
(
x− a
b

)m ]
, (4.2)

where a is a location parameter. One can see the logic of the mechanistic argument,
especially for a material such as one of these CFRP laminates which must, surely,
exhibit a real zero-failure-probability stress (i.e. a finite value of the location pa-
rameter, a). The usual procedure in such cases is to make guesses at the value of a
(perhaps starting at the minimum experimental value (see, for example, Chatfield
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Figure 5. Three-parameter Weibull plots of the tensile strength data represented in figure 4.

1983)), taking (x−a) as the transformed plotting variable in plots of the type in fig-
ure 4 until the best linear fit is obtained. An interesting alternative, however, is to use
a nonlinear fitting procedure to obtain directly a best-fit curve for the relationship
between the cumulative distribution function (CDF), FW, and the measured param-
eter, in this case the tensile strength, together with appropriate values of all three
distribution parameters, a, b and m. The results of figure 4 have been re-analysed in
this way by means of the software package Origin, by Microcal. The straightforward
mean-rank probability method† is used to derive the order statistics of the CDF, i.e.

FW = i/(N + 1), (4.3)

where i is the rank number and N is the number of data values. The nonlinear curve-
fitting process uses the Levenberg–Marquardt algorithm (Press et al. 1988) after an
initial application of a Simplex minimization (based on the method of Nelder &
Mead (1965)) for parameter initialization. The fitting results are shown in figure 5,
in which the fitting parameters m, a and b are given on the diagram, together with
the value of χ2 returned by the programme as the indicator of goodness-of-fit. It
is somewhat surprising to note that in three out of the four cases, the value of the
location parameter, a, turns out to be zero and for the fourth case nearly zero,
despite the unlikelihood that physical failure of any of these laminates could ever
occur at stresses much below the minimum test strengths shown in the diagrams.
Despite the physical argument, therefore, it does not seem so unreasonable to use

† Brief consideration of the choice of ranking method is given in the appendix.
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Table 4. Weibull parameters for the strengths of the experimental CFRP laminates

Weibull model and parameter (para.)︷ ︸︸ ︷
2-para. 3-para. 2-para. 3-para. 2-para. 3-para.

material m m b b a a

tension
T800/5254 21.4 21.5 1.71 1.70 0 0
T800/924 17.0 15.4 1.46 1.42 0 0
IM7/977 21.9 21.0 1.46 1.46 0 0
HTA/913 25.1 24.2 1.29 1.14 0 0.16

compression
T800/5254 9.9 9.1 0.93 0.92 0 0
T800/924 10.1 15.9 0.94 0.87 0 0
IM7/977 12.3 11.6 0.94 0.94 0 0
HTA/913 12.4 14.5 1.01 1.00 0 0
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Figure 6. Two-parameter Weibull plots of compression strength data for four CFRP laminates.

the two-parameter Weibull model, even for materials such as these laminates. The
values of the Weibull parameters obtained from the two methods may be compared
in table 4 and it can be seen that the level of agreement is extremely high.

By contrast with the tensile strengths, the compression strengths of the two T800
composites and the IM7 material show much more homogeneous behaviour, as can be
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seen from the two-parameter Weibull plots in figure 6, while the HTA/913 material,
surprisingly, shows a significantly higher strength than the other materials. The level
of variability is similar in all four materials, since the Weibull shape parameters are
all in the range 10–12. The plots are all reasonably linear, despite the much smaller
numbers of test results. It is interesting to note that nonlinear curve fitting to the
three-parameter Weibull model produces a result similar to that discussed above for
the tensile strengths, namely that the fitted location parameter, a, is zero for all four
laminates and the predicted values of m and b are again similar to those obtained
from the linear curve fit. The comparison is again made in table 4 and it can be seen
that, in this case, the smaller numbers of test data lead to slightly poorer agreement
in the case of two of the composites.

(b ) Statistical analysis of fatigue data

It is appropriate at this point to give some thought to the statistical analysis of
fatigue data with specific reference to two separate issues: (i) the selection of an
appropriate design-life parameter (as touched on earlier); and (ii) the problem of
obtaining safe design criteria for applications involving composite materials from
relatively small experimental data sets. Since the acquisition of fatigue data for any
new material is costly and time-consuming, and since new composite materials are
constantly being introduced, it is of advantage to the designer to have available some
conservative means of estimating the potential usefulness of such a new material as
soon as possible. Thus, although it is a sine qua non that before any new mate-
rial is put into real service its fatigue properties must be exhaustively investigated,
there is considerable value in having available some means of judging the likely fa-
tigue performance from a relatively small data bank. This is not as hazardous as
it sounds, despite what we know of statistical methods of analysis, because of the
regular patterns of behaviour that are appearing from current research.

(i) Statistical concepts and extreme-value theory: the Weibull model

Extreme-value models are appropriate models for describing many engineering
phenomena. Typical examples are given by Bury (1975) for systems where the rel-
evant parameters are the characteristic largest and characteristic smallest values of
a distribution. For example, in a system of many parallel components, the lives of
which are variable, it is the life of the longest-lasting component which determines
the life of the system as a whole. In such a case, it is the type I model for maxima
which is relevant, whereas, by contrast, in the case of the life of a gas-turbine disc
fitted with a large number of blades, the turbine life is determined by the life of the
shortest-lived blade—a ‘weakest-link’ model. Such a model, referred to as a type III
asymptote model, is also applicable to the fatigue behaviour of engineering materials.
It is useful at this stage to review the nature of the Weibull model and to indicate
the use that has been made of it by other researchers.

Let x1 be the minimum extreme value of n measurements of X in a model identified
by the formula f(x; θ), which is known to be bounded at its lower limit by some
threshold value a (the parameter a may often be zero in engineering problems).
What has come to be known as the Weibull model may be stated in terms of fW,
the probability distribution function (PDF), in the form given by Freudenthal &
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Gumbel (1954)

fW(x; a, b,m) =
m

b′ − a
(
x− a
b′ − a

)m−1

exp
[
−
(
x− a
b′ − a

)m ]
, 0 < (x− a), (b′ − a),m.

(4.4)
In equation (4.1), the PDF is presented in terms of the three-parameter Weibull
model for minima, where the symbols m, a and b were defined in §4 a. In this form,
the scale parameter, b, is given explicitly as (b′−a) and the form of equation (4.4) is
thus somewhat more logical than the normal form of the Weibull model, in which b
appears to vary when the location parameter is changed, whereas b′ remains invariant.
Since a transformation of the form

α

β
=
x− a
b′ − a

converts the three-parameter model to a two-parameter model (i.e. the situation
where a is known (see Castillo 1988, p. 199)), it is convenient to begin by considering
the simpler form

fW(x; b,m) =
m

b

(x
b

)m−1
exp

[
−
(x
b

)m ]
, 0 < x, b,m. (4.5)

This is the type III asymptote of the minimum extreme value among measurements
modelled by an initial distribution which is bounded below (i.e. a > 0). The cumu-
lative distribution function (CDF) corresponding to fW, represented by FW, is given
by

FW(x; b,m) =
∫ x

x=0
fW(x; b,m) dx (4.6)

or

FW(x; b,m) = 1− exp
[
−
(x
b

)m ]
, (4.7)

which is the form introduced earlier as equation (4.1).
The characteristic value, vmin, of an initial sample, X, is the value x for which

there is, on average, only one smaller observation among n (following Bury (q.v.)).
Thus,

nF (vmin; θ) = 1, F (vmin; θ) = 1/n, i.e. vmin = quantile q = (1/n).

Thus, vmin is the quantile of order 1/n and it decreases as n increases. Since F (x; θ)
is bounded at a > 0, vmin approaches a as the number of samples, n, increases.

The exact CDF of the smallest extreme value, x1, of an initial sample X is given
by

ϕ1(x) = 1− [1− F (x; θ)]n. (4.8)
When x = vmin, F (vmin; θ) = 1/n and

ϕ1(vmin) = 1− [1− (1/n)]n. (4.9)

As the initial sample size, n, increases, ϕ1 approaches [1 − exp(−1)], which is thus
the asymptotic probability of observing a minimum vmin. But, if F (x; θ) is bounded
below, this probability is

FW(vmin; b,m) = 1− exp(−1),
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and this represents the Weibull CDF when b = vmin. Thus, the characteristic value
of the type III asymptote is equal to the Weibull scale parameter, b. Since vmin is a
function of the initial sample size (equation (4.9)), the scale parameter, b, will change
with n when FW is applied as an extreme-value model.

Some of the familiar parameters of a Weibull PDF are
(i) the expected value of x (first moment of the distribution, or arithmetic mean)

bΓ
(

1 +
1
m

)
,

(ii) the mode (most probable value)

b

[
m− 1
m

]1/m

,

(iii) the median

b(ln 2)1/m,

(iv) the variance (second moment of the distribution)

b2
[

Γ
(

1 +
2
m

)
− Γ 2

(
1 +

1
m

)]
,

(v) the general quantile of order q

b

[
ln
(

1
1− q

)]1/m

,

(vi) the characteristic value of x (i.e. the 0.63 quantile)

b

and Γ is the gamma function.
An important aspect of the Weibull distribution is its reproductive property with

respect to its own minimum value. The exact distribution of the smallest observation
in a Weibull distribution is again a Weibull model. Thus, as demonstrated by Epstein
(1948) and by Bury (q.v.), the function of equation (4.8)

ϕ1(x; b′,m′) = 1− [1− F (x; b,m)]n = 1−
{

exp
[
−
(x
b

)m ]}n
= 1− exp

[
−
(

x

b/n1/m

)m ]
, i.e. ϕ1(x; b′,m′) = FW

(
x;

b

n1/m ,m

)
. (4.10)

Hence, if a sample of size n is taken from a box modelled by a Weibull function,
the smallest observation, x1, exhibits a Weibull distribution rescaled by n1/m. The
characteristic minimum value for a test sample of n tests will therefore be (b/n1/m)
and the modal (most probable) value will be given by

b

n1/m

(
1− 1

m

)1/m

.

The shape parameter of the new distribution, which we might designate m∗, remains
the same (m∗ = m).
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Figure 7. Histogram of fatigue lives for ud HTA/982 laminate at a peak stress of 1.6 GPa
(R = 0.1).

(ii) Application to results of fatigue tests on a unidirectional HTA/982 CFRP
laminate

One of the problems in designing with composites for a fatigue environment is that
of knowing how to cope with the variability of fatigue test data, which can be large
in fibre composite materials. As an example, we consider the histogram of figure 7,
which is for a replicate set of 50 fatigue tests on a unidirectional CFRP laminate of
the system HTA/982. The tensile strength of this material is 2.1 GPa and the fatigue
tests were carried out in repeated tension (R = +0.1) at a peak stress of 1.6 GPa
(i.e. 76% of the tensile strength).

The difficulty is that the experimental data cover a great range of sample lives.
The greatest number of failures occur in the band 30 000–40 000 cycles, but the
shortest observed life was 1392 cycles and there is a single outlier at nearly 200 000
cycles. Conventional design procedure would be to take the median value or some
other required failure probability and use a substantial safety factor. Choice of the
smallest observed value of life would clearly be equivalent to the use of an impossibly
large safety factor, and yet the CDF of the data set represented in figure 7 suggests
that there is no minimum life for this material at this stress level—a possibility that
would certainly disturb users of fibre composites.

In carrying out fatigue tests on composite materials, we usually try to obtain safe
stress–life curves with as few samples as possible because of the cost of extensive
testing programmes. In a replicate series of tests at several stress levels, the vari-
ances of the lives at each separate stress level will usually be of the same order of
magnitude and this often gives us sufficient confidence to reduce the number of in-
dividual replicates at each stress level. One of the problems is to know how many
replicate tests should be done at each stress level since, from an economic point of
view, the smaller the number of tests that can be used to establish a ‘safe’ σ/ logNf
curve, the better. It is commonly accepted that at least 20 individual tests may be
necessary before the user can have any confidence in a statistical analysis of results
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and King (1989) suggests that the minimum number may be even higher (30–45,
depending on the type of composite). Yet when stress–life curves are required at,
say, five different R ratios, even five tests at each stress level may be all that can
be provided in a reasonable amount of time, especially at long lives. It has been
demonstrated (see, for example, Whitney 1981; Gathercole et al. 1984) that pooling
of data from many stress levels and R ratios is permissible and that the pooled data
may be used to obtain a Weibull shape parameter which may then be used with
confidence to determine appropriate design allowables. It is interesting to speculate,
however, on the likelihood of obtaining, for a material such as that represented in
figure 7, test lives as low as 1392 cycles in a test series where n is much smaller than
50.

This may be explored with the aid of the model described earlier. If we assume
that the 50-sample data set reasonably represents the exact distribution of the fatigue
lives at the chosen stress level, FW(x; b,m), we may consider a small number, n, taken
at random from the full data set, to represent a test set of the more limited kind from
which we would usually construct our stress–life design curve. The theory presented
above suggests that the distribution of the minima of several such samples should
also be Weibull, with a scale parameter of (b/n1/m) and a shape parameter m. In
order to test this, a random-number program was used to select 20 samples of seven
test results each, from the full set, and the minima of these sub-sets were fitted to a
Weibull model.

There is disagreement about which of the several possible methods available for de-
termining the parameters of a Weibull distribution is the most appropriate. Freuden-
thal & Gumbel (1953, 1954) demonstrated the use of the method of moments pro-
posed by Weibull (1949), but King (1989) observes that it is not a very efficient
method and is not used for composite materials. Whitney (1981) used the maximum
likelihood estimate (MLE), considered to be superior to estimates derived by means
of linear regression methods (Shooman 1968), but Castillo (1988) suggests that be-
cause of the peculiar behaviour of the Weibull distribution for 1 < m < 2, the MLE
is not appropriate for Weibull distributions with m < 2, although it is highly rec-
ommended elsewhere because it gives the lowest variability. It is interesting to note
that the m values reported by Whitney and by Gathercole et al., for very different
materials, were both close to unity, whereas for the fatigue lives of metallic materials,
2 < m < 6, as pointed out by Freudenthal & Gumbel (1953). Talreja (1981) also
rejected the MLE approach in favour of a standardized variable estimation method
originally proposed by Lieblein (1955), suggesting a lower limiting value of m of
about 10 for valid use of the maximum likelihood method.

The choice of one method of estimating the distribution parameters over any other
may be made on the basis of the relative variances of the predicted values or (less
frequently now in view of the ready availability of high-speed computers) on the
basis of the labour involved in calculations. Although statisticians agree that the
simplest method of estimating the distribution parameters, namely the linear least-
squares technique, is unacceptable because, as Bury (q.v.) observes, order statistics
are dependent, it is curious to the non-specialist that fitting a straight line by eye to a
plot of ln(− ln(1−FW)) versus lnx to obtain estimates of m and b has authoritative
support (see, for example, Weibull 1961; Gumbel 1958; Chatfield 1983). For the
purposes of this initial analysis, we shall use the linear regression method.

Figure 8 shows conventional two-parameter Weibull plots of the full data set rep-
resented in figure 7 and the minimum-life data set obtained by random selection.
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Figure 8. Two-parameter Weibull plots for a unidirectional HTA/982 CFRP laminate. The lower
data set is a complete set of 50 test results and the upper set represents the minima of 20 groups
of seven results selected at random from the full data set (R = +0.1).

The mean-rank probability method (equation (4.3)) was again used to derive the
order statistics of the CDF. The degree of linearity in both cases is high and it can
be seen that the shape parameters are both close to unity, the regression lines being
almost parallel. The fitting algorithm in the Origin software gives values for the two
slopes, m1 and m2, of 1.202 (0.025) and 1.086 (0.068), the figures in brackets being
the standard deviations of the slopes. The t statistic for the difference is 2.339 for
70 degrees of freedom and, since the tabulated value of t for 70 degrees of freedom
is 2.381 at the 0.02 level, even this small difference in slopes is therefore just about
significant, statistically speaking, although for practical purposes it is not important.
The scale parameter for the ‘complete’ population is 50,153 cycles, while that for the
distribution of minima is 10,594 cycles.

The distribution parameters indicated on figure 8 may now be used to plot the
normalized PDFs for the two data sets, as shown in figure 9. Also plotted in figure 9 is
the curve defined by equation (4.10) with the same value of m as the full data set and
the modified scale parameter, bsample = b/m1/n = 50 153/(1.2)1/7, or 48 864 cycles. It
can be seen that on this linear plot, the two curves defining the PDFs for minima are
not very different in the neighbourhood of the peak values. The modal values for the
minima are 1065 and 1925 cycles, respectively, for the ‘experimental’ and ‘theoretical’
curves, a difference of no importance given the nature of the distribution shown in
figure 7. The modal value of life for the full data set is 11 268 cycles.

The parameters of the distribution of fatigue lives for the laminate are: (i) expected
value of x (arithmetic mean,

∑
x/n), 44 682 cycles; (ii) median, 38 000 cycles; (iii)

characteristic value (b), 50 153 cycles; (iv) shape parameter, m (by linear regression
of y on x), 1.202.

Expressions (i) and (iv) in §4 b (i) for the first two moments of the distribution
(mean and variance) may also be solved as a pair of simultaneous equations to find
m and b (method of moments) from the experimental distribution parameters; this
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Figure 9. Probability density functions for a unidirectional HTA/982 CFRP laminate. The full
curve is for a complete set of 50 test results. The broken curves represent distributions of
minima, one being predicted from the Weibull parameters of the full data set and the other an
‘experimental’ PDF for the minima of 20 groups of seven results selected at random from the
full data set (R = +0.1).

yields values of m = 1.247 and b = 46 100 cycles. Thus, the value of m predicted
by this method is to all intents and purposes the same as that obtained by linear
regression and the value of b is sufficiently close to the linear regression value of 50 153
for design purposes. The median life predicted from these distribution parameters,
b(ln 2)1/m, is 36 593 cycles.

With reference to the comment made earlier about the validity of using the simple
linear regression method of estimating m, it seems reasonable to suppose that since
fitting a straight line by eye intuitively involves minimizing errors in both x and y
directions rather than in the y direction alone as in the normal least-squares pro-
cedure, a more appropriate way of estimating m from the straight lines in figure 8
would be to take the geometric mean,

√
(m′m′′), of the slopes of the two regression

lines which describe the linear functions ŷ = m′x + c1 and y = m′′ + c2, which are
obtained by minimizing the sums of the squares first in the y direction and then in
the x direction. When the distribution in question is well represented by a straight
line (correlation coefficient→ 1), the two slopes will coincide, but not otherwise. For
the laminate data in figure 8, the regression line for x on y has the slope 0.815,
of which the reciprocal is 1.227, and the geometric mean value of the two slopes is
therefore 1.215. In this case, then, the difference is insignificant.
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(iii) Application to constant-life fatigue data for [(±45, 02)2]S laminates
The analysis described in the previous section dealt with the special case of a

single data set representing the distribution of fatigue lives at a one stress level. The
assumption is that a set of 50 test results is sufficiently large to be considered to
represent the complete population. This is likely to be an invalid assumption from
a statistical point of view, but it is clearly more valid to make predictions from 50
results than from, say, 10, when dealing with a property as variable as the fatigue
response of a composite. Even so, it is scarcely a practical or economic matter for a
designer to demand a family of fatigue σ/ logNf curves based on 50 or so replicate
tests at each stress level. Thus, the data pooling method used by Whitney (1981) has
considerable advantages. Whitney suggested that where small numbers of stress–life
values are available at a number of different stress levels, the data may be pooled
to give an overall value of the Weibull shape parameter, m, this value then being
used to obtain working stress–loglife curves for any given failure probability. This is
done by normalizing each group of data with respect to the characteristic life (the
Weibull scale parameter), pooling the data and then re-ranking them in order to allot
a new failure probability function to each point. In our earlier paper (Gathercole et
al. 1984), we applied the method to our results for the T800/5245 laminate and
found, like Whitney, that the single pooled data set showed a very high degree of
uniformity, with a shape parameter, m, of 1.1, almost identical with that obtained
by Whitney, quoting data by Ryder et al. (1977) for a similar type of carbon-fibre
composite. This analysis of the stress–life data was confirmed by Lamela-Rey (1994)
in a more rigorous analysis based on extreme-value theory by Castillo et al. (1993).

An interesting question, in relation to the pooling method, is whether the use
of the scale parameter for normalization is a valid method. Where only a few data
points per stress level are available, the application of the least-squares method to
analyse a two-parameter Weibull plot can produce highly variable values of m (the
slope of the curve), as shown in our earlier paper, although the b values appear to be
more consistent because they are indicators of central tendency, whereas m values
are more affected by extreme values. For this reason, we have modified our approach
for the present analysis by normalizing the data sets for each individual stress level
with respect to the actual median, m(Nf), of the group. This also permits the use of
data sets consisting of only two results, although the majority of data sets consist of
many more than this. The pooled, normalized life data obtained from the raw test
results from all stress levels and R ratios for all four CFRP laminates are shown on
two-parameter Weibull plots in figure 10. Although the correlation coefficients for
the fits are all high, we note that this method of normalization produces pooled data
sets which fall less satisfactorily on straight lines than was the case; for example,
for the same T800/5245 data plotted in the paper by Gathercole et al. (1984) where
the normalization was with respect to the characteristic value, as discussed above.
This is presumably because the latter method produces an element of smoothing,
whereas when the median is used for the normalization, a high proportion of the
normalized data points will have a value of unity, hence the step which appears at
an abscissa value of about zero in all four graphs. In each graph, there is also a
small number of abnormally long lives which result in a slight flattening of the data
distribution. These points do not fit well on the regression lines, but, as pointed out
by Castillo (q.v. p. 203), the regression line must in any case be fitted to data in the
tail of interest because the Weibull distribution is an asymptotic distribution and
generally gives an approximation for that tail only; in this instance the lower end
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Figure 10. Two-parameter Weibull plots of pooled normalized fatigue lives for all stress levels
and R ratios. The lives are normalized with respect to the median life, m(Nf), in each individual
data set.

of the distribution. This is also an argument for the safe ignoring of run-out data.
We note that, of the four materials, only the data for the T800/924 composite give
a line which is less than convincing and the m value obtained for the T800/5245 is
substantially the same as that reported in our earlier paper, namely 1.1.

A small number of points in each of the pooled data sets appeared to represent
failures at abnormally low lives and, because of the logarithmic scale, these distorted
the linearity of the plots considerably. Inspection of the data sets revealed in each
case that these points were for lives in repeated tension or tension–compression that
were less than 100 cycles and almost always two orders of magnitude or more than
other lives in the set. Since the servo-hydraulic machines rarely settle to the preset
cycling pattern in less than 100 cycles (less than a half minute), it seems reasonable
to ignore these points.

For the sake of completeness, values of the Weibull parameters obtained by a
number of different procedures are compared in table 5. In each group of the table,
the first two estimates are the linear (two-parameter Weibull model) and nonlinear
(three-parameter Weibull model) estimates for the pooled data normalized with re-
spect to the experimental median life and the third is a nonlinear estimate based
on data normalized, as in the Whitney model, with respect to the characteristic life,
b, for the individual data set, regardless of how small the data set is. The fourth
estimate in each group was obtained by the method of moments, as described in
§4 b (ii), by solving the two simultaneous equations defining the arithmetic mean
and variance in terms of the Weibull parameters. The differences between values of
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Table 5. Comparison of Weibull parameters for distributions of fatigue lives, obtained by
different methods, for four CFRP laminates

material
normalization global ︷ ︸︸ ︷

model method para. T800/5254 T800/924 IM7/977 HTA/913

linear regression median, m(Nf) m 1.12 1.35 1.13 1.45
nonlinear median, m(Nf) m 1.25 1.49 1.41 1.71
nonlinear b, for each data set m 1.13 1.34 1.10 1.53
moments (linear) median, m(Nf) m 0.74 0.78 0.78 1.07
linear regression median, m(Nf) b 1.55 1.58 1.45 1.44
nonlinear median, m(Nf) b 1.24 0.94 1.23 1.17
nonlinear b, for each data set b 0.93 0.85 0.92 0.93
moments (linear) median, m(Nf) b 1.32 1.34 1.24 1.37
linear regression median, m(Nf) a

nonlinear median, m(Nf) a 0.09 0.03 0.05 0.1
nonlinear b, for each data set a 0 0.02 0 0
moments (linear) median, m(Nf) a

m obtained by the first three methods are very small and the choice of a method for
the practical purpose of life prediction would represent no difficulty. The values of b
given by the three methods are much more variable but, since pooling is carried out
only to provide a reliable value of the shape parameter, this variability is immaterial.
The formal statistical method of moments gives values of m which differ significantly
from those given by the other methods, three out of the four being less than unity
which precludes the use of any further analysis that involves the calculation of a
mode. Even the value for T800/5245, which has the largest data set and shows the
best straight-line fit to the pooled data, is very much lower than the values given by
the other procedures. This standard method appears not to be satisfactory, there-
fore, by contrast with the findings of Freudenthal & Gumbel (1953, 1954) for metallic
materials.

The pooling concept makes the assumption that the shape parameter for fatigue
life distributions is not a function of the cyclic stress. There is a priori no justifi-
cation for making this assumption and indeed it has been suggested by Freudenthal
& Gumbel (1956) that, on the contrary, m will be a function of stress. In our pre-
vious paper, however, we showed that, for the T800/5245 laminate, the values of m
determined for small samples at all R ratios varied widely between about 0.3 and
3.0 but showed no evidence of any consistent variation with stress. Nakayasu (1987)
has shown that the Weibull shape parameters for a number of related fatigue-life
data sets may themselves be modelled by a Weibull distribution. For a large number
of data sets for a medium-carbon steel, for example, he obtained a good fit to a
three-parameter Weibull model with the median value of the shape parameter being
1.69. If all of the individual data sets for all four laminates under consideration in
this paper are treated in the same fashion, we obtain similar results, with the shape
parameters for the high-performance fibre laminates all being close to unity, while
that for the HTA/913 material is slightly higher, at 1.37. The location parameters
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for the materials correspond roughly to the lowest estimated m value in each case,
between 0.2 and 0.3, while the scale parameters are between 0.7 and 1.1.

Having established a reasonable value of the shape parameter, m, from a pooled
data set, the designer then has access to a range of design parameters beyond the
usual mean or median through the relationships listed in §4 b (i). It is interesting,
as an example, to compare some of these parameters for a particular set of stress–
life data, namely the σ/ logNf curve for the T800/5245 laminate at R = 0.1, for
which the numbers of replicate tests for the six available stress levels vary between
5 and 12. Figure 11 shows the relationships between some of these parameters. The
curve to the extreme right is a σ/ logNf curve based on arithmetic means. The
two sets of triangles represent medians, the experimental medians being the upright
triangles, while the inverted symbols are obtained from the distribution parameters
as b(ln 2)1/m, m being obtained from the pooled data set. On the logarithmic plot,
there is no significant difference between the two and the dashed curve is drawn
through the averages of the pairs of values. The diamond-shaped points represent
the modal values of the PDFs, b(1− (1/m))1/m, and the open squares represent the
modal values of the distributions of the minima, as discussed in §4 b (i). This extreme
left-hand curve is effectively a reasonable estimate of the most likely minimum lives
at each of the stresses represented and is a possible alternative to the usual type
of quantile or percentage probability failure curve. It is interesting to note that the
scale parameters, b, for the individual replicate data sets, deduced with the aid of
the predetermined m value, are indistinguishable from the arithmetic mean values
in figure 11. The curves drawn through the several sets of points are third-order
polynomials and it can be seen that they form a family in which the separation of
the minimum and the mean is roughly a constant 1 1

2 decades over the stress–life
window represented. It is clear that, provided there is an awareness of the relative
positions of these families of curves, there is no particular justification in insisting,
for example, on the use of the median as opposed to the mean in presenting fatigue
data.

It is interesting that the minimum-life curve in figure 11 is smooth and closely in
register with the experimental median-life curve, despite the fact that the numbers,
n, of replicate test results at the different stress levels are small and vary consid-
erably. The sensitivity of the minimum-life curve to the value of the Weibull shape
parameter, m, and to the size of the replicate test sample may be demonstrated, as
shown in figure 12, by plotting the scaling factor, (n1/m)−1, derived from equation
(4.10), as a function of n for selected m values. It can be seen that for a represen-
tative m value of 1.3, the scaling factor falls from about 0.25 to about 0.17 when
the sample size is doubled from 5 to 10. Similarly, for a fixed sample size of 5, the
factor falls from 0.33 to 0.23 when m falls from 1.5 to 1.1. Both of these reductions
imply an improved level of confidence, since they involve a shift of the minimum-life
curve to the left, but on a logarithmic life scale the shifts would not be particularly
dramatic.

(c ) Constant life analysis and life prediction
The median-life data of figure 2 and figure 3 are plotted in terms of peak stress

as a function of life. It is apparent, however, that, as the compression component
of cycling increases (R increasingly negative), the stress range, 2σalt, to which the
sample is subjected initially, increases. If the data were plotted as stress range versus
loglife, the data points for R = −0.3 would then lie above those for R = +0.1. This
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Figure 11. Stress–log-life curves for [(±45, 02)2]S T800/5245 laminate at R = 0.1. The fitted
curves are third-order polynomials. The curve for the median data is plotted through the averages
of the two points shown (actual and PDF values). The sample b values are indistinguishable
from the mean lives on this logarithmic plot.
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Figure 12. Sensitivity of extreme-value b parameter to the value of the Weibull modulus, m,
and the number of test results, n. Data for T800/5245 [(±45, 02)2]S laminate at R = +0.1.

is a familiar feature of fatigue in fibre composites and it indicates that some element
of compression load in the cycle can apparently improve the fatigue response. It also
results in a well-known aspect of composites fatigue, namely that master diagrams
of the constant life, or Goodman, variety are displaced from symmetry about the
alternating-stress axis at R = −1 (Schütz & Gerharz 1977; Howe & Owen 1972; Kim
1988). In some of our earlier work (Adam et al. 1986, 1989; Fernando et al. al 1988),
we showed that, for a family of hybrid carbon/Kevlar composites, the effects of R
ratio could be illustrated by presenting the fatigue data as a normalized constant life
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diagram by means of the fatigue parameter, f

f =
a

(1−m)(c+m)
, (4.11)

where a = σalt/σt, m = σm/σt and c = σc/σt. σalt is the alternating component of
stress, which is equal to 1

2(σmax − σmin), and m is the mean stress, 1
2(σmax + σmin).

In these definitions, σt, σc are the monotonic tensile and compressive strengths,
respectively. For the purposes of this parametric analysis, we keep the sign of σc
positive, so that the parameter c is also positive. The stress function, f , depends on
the test material. Since this is a parabolic function, the criterion is more akin to the
old Gerber function (Gerber 1874) than the linear Goodman relationship (Goodman
1899).

Although these and other early results fitted the simple parabolic model for a
particular life reasonably well, as more R values were investigated for more materials
it became increasingly apparent that a more complex function was required. A bell-
shaped curve seemed more representative and it could be seen that equation (4.11)
was a special case of the more general function

a = f(1−m)u(c+m)v. (4.12)

In the first instance, the development of this model was purely empirical; there was
no a priori reason to suppose that the values of the parameters f , u and v had any
special significance relative to the material structure/properties relationship or the
local fatigue damage mechanisms contributing to failure.

(i) Application of the model for life prediction
In this part of our paper, we describe the stages in the analysis, illustrated with

results for various materials.

Task 1: data acquisition. In addition to determining the tension and compression
strengths of any new material, it is necessary to obtain stress–life data for a series
of stress levels that cover to an adequate extent the whole working range from the
monotonic strength level down to any notional ‘endurance limit’. Initially, five or so
replicate tests at each of four or five stress levels will define a reasonable stress–life
curve for a particular R ratio and data for several R ratios from repeated tension
to repeated compression will be required. Such small numbers of tests are not in
themselves adequate for defining a true probability distribution function at any stress
level, but the multiplicity of stress levels increases the confidence in fitting a curve,
whether it be a polynomial or some other specific function. The same is true whether
testing is replicate or random. We have already explored the use of the pooling
concept to derive statistical information which can then be applied with greater
levels of confidence to the smaller test data sets.

In view of the conclusion of §4 b (iii), in what follows we use the median as the
working life parameter, but we assume that the same principles will apply to any
other statistically derived parameter.

Task 2: initial data analysis. For the plotting of constant-life diagrams, a suitable
method of interpolation of data such as those in figure 2 and figure 3 is required.
There are several possibilities, including linear interpolation between the median
data points and nonlinear interpolation, either between the median data points or
along a curve fitted to the whole data set for a given R value. Hitherto, we have
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Figure 13. S/ logN data for HTA/913 laminate. The plotted points are the full fatigue data
sets and the curves are second-order polynomial fits to the data.

used only nonlinear fitting of polynomials, usually of third order, but it is not yet
certain that this is the most appropriate method. We have observed, however, that
for a reasonably well-arranged set of data, polynomial fits to the median points and
the full data sets are indistinguishable, as can be seen for the data for HTA/913 in
figure 13. One advantage of fitting a curve to the full data set is that the extent to
which the fitted curves may be safely extrapolated is somewhat greater than when
only the median points are used.

One problem that we have observed in fitting polynomials is that when there is
a large gap between the monotonic tensile strength and the shortest life for the
next highest stress level, the shape of the full curve may not be well represented by
the best-fit polynomial. A second-order curve will sometimes rise above the tensile
strength value and a third-order curve may become sinuous in the short-life region. In
order to avoid this problem, it is tempting to ensure that some fatigue tests are done
at higher stress levels. But since tests resulting in lives of between 100 and 1000 cycles
are often affected by initial machine stability, a better solution may be to choose a
fitting function that allows a fairly linear initial portion. Such models have been
suggested by Talreja (1981), Curtis (1986) and Harris et al. (1990). Nishijima (1987)
has also reviewed a number of similar parametric models. Even linear interpolation
would probably be adequate.

Our present method of analysis is to plot graphs of the kind shown in figure 2 in the
package Origin, already referred to, which provides a flexible group of curve-fitting
routines, including user-defined ones. Once an acceptable level of goodness-of-fit
is established, the resulting polynomial coefficients are entered into a spread-sheet
(Microsoft Excel), together with values for the monotonic tension and compression
strengths of the laminate. Excel then produces a set of data pairs (m, a), as de-
fined by equation (4.12), which includes the end points (c, 0) and (1, 0), representing
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Figure 14. Constant-life plots for four CFRP laminates of [(±45, 02)2]S construction.

the monotonic failure conditions. These data sets, for given lives (e.g. 104, 105, 106

cycles), are then exported back to Origin for plotting in the form of constant-life
diagrams. The extent to which extrapolation of the polynomial curves beyond the
actual experimental data window is permissible or safe is a matter which must be
carefully controlled. The results of such an analysis for all four experimental lami-
nates are shown in figure 14, from which it can be seen that there is a great deal
of similarity between these four materials, despite important differences in actual
material characteristics.

Task 3: life prediction. In order to use the constant-life model of equation (4.12)
for life prediction, it is first necessary to explore the variation of the fitting param-
eters with fatigue life. This is done by fitting equation (4.12) to the data sets. In
a preliminary fitting session, all three parameters, f , u and v, are allowed to vary
freely. The parameter f controls the overall height of the bell-shaped curve, whereas
u and v determine the shapes of the left and right wings of the curve and therefore
allow for any asymmetry in the material’s fatigue response. Early experience sug-
gested that the same value of f could be used for all lives and the mean value from
the initial fitting is therefore used in a second fitting session to determine the final
values of u and v. Taking the IM7/977 laminate as an example, figure 15 shows the
relatively insignificant effect of this assumption on the shapes of the fitted curves.
For the fitting processes, the results of which are plotted in figure 14, the coefficients
of variation for the fitting of u and v were always of the order of 4%.

As we have remarked, the constant-life plots in figure 14 represent relationships
between the parameters a and m, which are already normalized with respect to
the laminate tensile strength. It appears, nonetheless, from the results that we have
obtained so far, that the scaling parameter, f , is related to the laminate tensile
strength, as illustrated in figure 16. The relationship between f and laminate strength
is represented by the equation

f = 2.78σf − 2.60, (4.13)
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Figure 16. Dependence of constant-life model f parameter on laminate tensile strength. The
vertical error bars are standard deviations for the fitted values of f and the horizontal bars are
standard deviations for the measured tensile strengths.

with a correlation coefficient of 0.987, which is significant even with only four data
pairs. This is unexpected and requires more detailed examination, but the value of
a generally valid linear relationship of this kind is that it would provide a useful
starting point, based on known information, when the fitting procedure is applied to
a new material.

It follows from the derivation of the constant-life plots that the higher the values of
f , the better the fatigue performance at any given life, since f , overall, determines the
relative ‘amplitude’ of the curve, and the higher the curve, the greater the alternating
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stress that can be tolerated for a given mean stress at a given life. This feature
therefore reinforces to some extent the common stress–life equal-rank assumption
discussed earlier. The regression line in figure 16 does not extrapolate to the origin
and it possible, therefore, that the relationship could turn out to be nonlinear if data
for a wider range of materials (e.g. other fibres, other lay-ups) were available.

The parameters u and v both depend on the fatigue life, as is apparent from
figure 14. The exact nature of this dependence for the four experimental laminates is
illustrated in figure 17. The error bars in this figure represent the standard deviations
for the fits shown in figure 14. The relationships are again linear over the range of lives
studied here and extrapolation to 107 cycles would certainly not be too hazardous.
For the T800/5245 and IM7/977 laminates, the slopes of the curves of u, v versus
logNf are all the same. But whereas the actual u and v values for the IM7/977
are also similar to each other, indicating a symmetric constant-life curve, there is a
larger difference between the u and v values for the T800/5245 material than for any
of the others. The slopes of the u, v versus logNf lines for T800/924 and IM7/977
are slightly different, the former being somewhat higher, but the actual values for
these two laminates are very close indeed, certainly to within the sensitivity of the
fit. Thus, in terms of the relationships

u, v = A logNf +B, (4.14)

it can be said that the slope, A, is, to all intents and purposes, the same for all three
of the higher-performance laminates, while the intercept, B, shows some differences
from laminate to laminate and is different for u and v.

The higher the values of u and v, the poorer the fatigue performance, since the fur-
ther u and v rise above unity (the parabolic special case of the generalized constant-
life relationship), the more the ‘wings’ of the curve are pulled downwards and the
more bell-shaped the curve becomes, so reducing the level of alternating stress that
can be tolerated for a given mean stress at a given life. It rather appears that the
high v values for HTA/913 are associated with the high ratio of the monotonic com-
pression and tensile strengths, defined as the parameter c (equal to σc/σt) since, as
already noted, the HTA/913 laminate stands out from the others in this respect.

Finally, the greater the slopes, du/d logNf and dv/d logNf , the poorer the fatigue
performance because the higher the slope, the greater the downward deviation of the
σ/ logNf curve at long lives. As we have already suggested, the greater the difference
in the values of u and v for a particular material, the greater the degree of asymmetry
of the constant-life curve. This may influence the choice of material if it is known
that for a given application a particular degree of compression or tension loading
will predominate.

Having established the parameters of the relationships in equations (4.3), it is now
possible to predict σ/ logNf curves for any desired R ratio. This is done by solving
the pair of simultaneous equations

a = f(1−m)u(Nf )(c+m)v(Nf ), a = m

(
1−R
1 +R

)
(4.15)

The first of these is the constant-life equation, equation (4.12), modified to in-
clude information about the life-dependence of the two exponents, u(Nf) and v(Nf),
as established from the form of equations (4.14). The second is derived from the
conventional definition of the stress ratio. Solution of these two equations is easily
carried out in a package like the MathSoft Mathcad programme, which will graph or
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Figure 17. Dependence of the constant-life parameters u and v on loglife for four CFRP
laminates.

tabulate σ/ logNf curves for a chosen range of R values. The output can be in one of
two forms, depending on the requirements of the user. The first is a three-dimensional
generalization of the constant-life plots of figure 11, a surface plot showing the full
variation of (a,m, logNf), as illustrated for the IM7/977 laminate in figure 18. It is
interesting to recall that this type of three-dimensional constant-life plot was first
used for metallic materials by Stussi in 1955.

Alternatively, a family of stress–life curves of conventional form can be produced
for ranges of lives that are consistent with the original experimental data window.
As an example of the predictive capability of the method, we reproduce in figure 19
a set of stress–median-life curves for the IM7/977 composite which were predicted
at a time when only the monotonic strengths (σt and σc) and part of the σ/ logNf
curve (the first five data points only) for R = 0.1 were available. Choice of values
for f , u and v was made from knowledge of the behaviour of the T800/924 laminate
already tested. Superimposed on the plot are the full data sets that were subsequently
obtained for the IM7/977 laminate; the initial five points used in the prediction are
shown as filled symbols. Predictions were made with Mathcad for the range of loglife
values from 3 to 7 only, but the full σ/ logNf curves for R = +0.1, −0.3 and +10
shown in the diagram were drawn by extrapolating back to the monotonic strength
values, in the normal way.
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Figure 18. Three-dimensional surface plot of the a,m, logNf constant-life relationship defined
by the first of equations (4.15) for the [(±45, 02)2]S IM7/977 laminate.
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Figure 19. Stress–life curves for the [(±45, 02)2]S IM7/977 laminate predicted from σ/ logNf
data at a single R ratio (R = 0.1) and the monotonic strengths. The filled data points for
R = 0.1 are the values used in the prediction. All other data were obtained after the predictions
were made.

It can be seen that that the level of agreement between the predicted curves and
the experimental data for stress ratios of −1.0, −1.5 and +10 is extremely good.
The polynomials for R = −1.0 and −1.5 could also have been extrapolated back
at least one more decade without danger. The agreement of the predicted curve for
R = +0.1 with the full data set is acceptable, although the two run-out values at

Phil. Trans. R. Soc. Lond. A (1997)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


1288 B. Harris and others

107 cycles have not been allowed for. The poorest fit in figure 19 is for R = −0.3.
For this laminate, the results at this R value were somewhat different from what we
have observed for other composites. The point at which the σ/ logNf curve begins
to deviate downwards from the curve for R = 0.1 is between 104 and 105 cycles—
perhaps a decade later than is usually the case—and the rate of downward deviation
is then quite rapid. As a consequence, the predicted σ/ logNf curve for an R ratio
of −0.3 is too conservative over the greater part of the range. From the designer’s
point of view, however, this is a safe prediction.

(ii) Prediction of design data
As a final example, we examine the procedure for predicting a family of minimum-

life curves from an existing set of σ/ logNf curves. For this purpose, we take the data
for the HTA/913 laminate.

The initial analysis is carried out by means of a simple program written in Basic.
The available values of Nf at each stress level, irrespective of R, are first normalized
with respect to the actual median life, m(Nf), for that stress level. The normalized
data are then pooled, as described earlier, and the Weibull analysis carried out.
At this stage, we are still using a two-parameter model, which seems reasonable
since the normalized data are effectively bounded at Nf/m(Nf) = 0. The regression
is carried out twice, for both y on x and x on y, and the geometric mean shape
parameter, m, and the value of the gamma function Γ (1 + (1/m)) are found. The
individual life data files are then reprocessed with the established value of m as the
appropriate shape parameter and a table of statistical data is printed which includes
the mean and median lives, the characteristic and modal values of the probability
distribution function for the replicate sample, and the characteristic and modal values
for the probability distribution of minima, calculated according to the arguments in
§4 b (iii). Data for any required quantile could also equally well be determined.

The minimum-life data (PDF modal values), such as those shown in figure 11,
may now be used, with the same procedure as that described in the previous sec-
tion, to determine a constant-minimum-life diagram. Polynomial functions are fitted
to the minimum-life σ/ logNf curves, the coefficients are extracted and these are
used, together with the monotonic tensile and compression strengths, to plot the
(a,m, logNf) Stussi surface. The constant-life function, equation (4.12), is fitted to
the constant-life curves to establish the appropriate values of f , u and v, and the life
dependences of u and v are obtained. For the HTA/913 data used in this example,
the value of f , determined as described earlier, was found to be 1.0, the same value as
for the fitting of the median-life results, and the relationships for the life-dependence
of u and v were found to be

u = 0.65 logNf − 0.293, v = 0.82 logNf − 0.448. (4.16)

Finally, these relationships are used to predict a family of minimum-life σ/ logNf
curves as shown in the form of a surface plot in figure 20.

(iii) Concluding comments
The life-prediction model discussed here was first conceived as an empirical de-

scription of fatigue data obtained over a limited range of R values for some unidirec-
tional composites consisting of members of the hybrid family CFRP/KFRP (Adam
et al. 1986, 1989; Fernando et al. 1988). By inspection, it appeared that a simple
parabolic function fitted the normalized (m, a) data for a limited range of R values
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Figure 20. Surface plot of predicted family of stress–life curves for HTA/913 [(±45, 02)2]S lami-
nate. The lives represented here are minimum-life values derived from the extreme-value model.

and the model was successful in predicting stress–life relationships for a range of
compositions within the hybrid family, from plain CFRP to plain KFRP. The po-
tential value of a model which permitted the prediction of fatigue response from a
relatively limited experimental data base was emphasized at the time. Since that
early work was done, many new high-performance composite materials have been
introduced and the obvious requirement was to investigate the validity of the early
model for different composite types and different lay-ups.

It became apparent as experiments were carried out over a wider range of R
ratios that the original parabolic model was inadequate and it was refined, first, to
a symmetric power-law and, subsequently, to an asymmetric power law (Adam et
al. 1992), as described by equation (4.12). Fatigue results for four modern CFRP
laminates (of varying character but all of the same [(±45, 02)2]S lay-up) are now
shown to fit this power-law model very well. The original data for unidirectional
hybrids fit the new model acceptably since, as we have shown elsewhere (Gathercole
et al. 1994), (m, a) data pairs for R ratios between +0.1 and −0.6 fit either model
equally well.

A somewhat surprising feature of the results that we have obtained is the apparent
similarity of the behaviour of the four composites described in this paper. Only
the tensile properties and tension-dominated fatigue response appear to show real
differences, which is unexpected, given the known differences in interfacial bond
strength in some of these materials, a matter upon which we have also commented
elsewhere (Gathercole et al. 1994). This similarity means that we have not yet been
able to demonstrate unambiguously the generality of the power-law model, but we
are now extending the programme to include glass-fibre-reinforced plastics. We have
also begun to assess the applicability of the model to materials which have sustained
adventitious damage by low-velocity impact.
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We also acknowledge the limitations of a model that has been developed on the ba-
sis of median fatigue lives and polynomial curve fits and we are at present evaluating
the likely validity of the model for use with statistically more realistic parameters.
We are interested in offering the designer a conservative predictive tool that will work
with a minimum of experimental data but which will allow continuous up-dating of
the predictions as more data become available. It seems that a possible approach is
to develop a stand-alone expert system. A suggested procedure might be as follows.

An initial experimental programme would be carried out to determine the mono-
tonic tension and compression strengths, together with stress–life data for stress
ratios of +0.1 and perhaps −1.2 in order to locate curves reasonably well in both
the right- and left-hand quadrants of the constant-life diagram. Perhaps three repli-
cate tests might be done initially at each of three stress levels for both R ratios. By
pooling the 15 to 20 fatigue lives so obtained, following the descriptions of Whitney
(1981) and of Yang & Jones (1981), a trial value of the Weibull shape parameter,
m, could be obtained. A crude estimate could then be made of the modal value of
the distribution of minima for each stress level on the basis of the extreme-value-
theory premise (Bury 1975; Castillo 1988) that the distribution of the minima of
a Weibull distribution with shape parameter m is also a Weibull distribution with
shape parameter m and characteristic minimum value b/n1/m, where n is the size of
the sample and b is the scale parameter of the replicate test set. The minimum-life
distribution could then be used to derive trial constant-life curves, with appropriate
‘guesses’ being made initially for the parameters f (e.g. on the basis of the laminate
tensile strength), u and v until sufficient data were available to permit realistic curve
fitting.

Initially, the statistical validity of the procedure would be open to question and
would require careful testing before serious use but, as further data were acquired, the
validity would improve, together with the true predictive capacity of the model. We
are currently evaluating the predictive capability of the constant-life model described
here against the possible application of an artificial neural network for the same
purpose (Lee et al. 1995; Harris et al. 1996).

5. Conclusions

(1) An investigation has been carried out of the constant-stress fatigue behaviour
of a range of modern, high-performance carbon-fibre-composite materials, all with
a similar [(±45, 02)2]S lay-up, the group comprising three different fibres and four
different resins.

(2) It is found that, despite the variations in material types and some known
differences in the character of the fibre/resin bond in these materials, the fatigue
behaviour displayed by the separate materials is remarkably similar, although not
such as would permit a simple analysis in terms of the so-called strength/life equal-
rank assumption.

(3) The pattern of behaviour observed for these four laminates suggests an ap-
proach to the development of a life-prediction model that appears promising. It is
based on a constant-life model developed originally for one of the laminates, the
T800/5245 material, and it has now been demonstrated that this model fits all of
the materials under investigation. Reasonable (and conservative) predictions have
been made for one material on the basis of very limited initial fatigue and strength
data for that material and accumulated experience obtained with others.
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Table 6. Statistical parameters for fitting with three different ranking methods: full data set for
unidirectional HTA/982 at a stress of 1.6 GPa (R = 0.1)

slope, st. dev. correlation st. dev.
ranking method m of slope coeff., r of r

i/(N + 1) 1.202 0.025 0.9896 0.1705
(i− 0.5)/N 1.299 0.022 0.9933 0.1472
(i− 0.3)/(N + 0.4) 1.255 0.023 0.9920 0.1561

The authors thank Dr Linda Wolstenholme of City University, UK, for advice on the discussion
of the Weibull model. They also thank the Defence Research Agency for support of this work,
and for the autoclaving and C-scanning of the laminates, and Mr Matthew Hiley of DRA,
Farnborough, for his guidance and encouragement.

Appendix A. Selection of ranking method

A variety of different probability ranking methods have been used for the purpose
of Weibull analysis. Three of the more commonly used relationships are

the mean rank FW =
i

N + 1
,

the median rank FW =
i− 0.3
N + 0.4

,

probability interval mid-point FW =
i− 0.5
N

,

where i is the rank of a given datum value and N is the number of values in the data
set. Discussions of the origins and validity of these and others are to be found in the
literature (see, for example, Cunnane 1978; Castillo 1988). We know that most of
them are biased to a greater or lesser extent and it is interesting to see how different
are the results of their use for estimating the slope of a Weibull plot. The three
methods are used to rank the fatigue-life data set for the HTA/982 unidirectional
laminate discussed in §4 b (ii) and the results are shown in figure 21 as plots of
ln[− ln(1−FW)] against lnNf . The estimated values of the slope,m, and the statistical
parameters of the fitting procedure are given in table 6.

Although the probability interval mid-point ranking gives the lowest variances
both for the correlation and for the slope, the differences for this data set are very
small and the actual values of the slope given by the linear regression differ from
each other only in the second decimal place.

In §4 b (ii) we have also examined a data set which represents the minimum values
of a set of 20 samples of 7 lives taken at random from the full data set for this
material. These data are also represented in figure 8 and it can be seen that they are
less well represented by the two-parameter Weibull distribution than the parent data
set. When this set of minimum lives is ranked by the three methods described above,
the results are as shown in table 7. In this case, the values of the slope differ somewhat
more than those for the full data set and the variances for the three different ranking
methods are between seven and seventeen times greater. The correlation coefficients
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Figure 21. Effect of method of determining plotting position on the estimated value of the Weibull
shape parameter. Test data are 50 fatigue life measurements for a ud HTA/982 laminate at a
peak stress of 1.6 GPa and R = 0.1.

Table 7. Statistical parameters for fitting with three different ranking methods: minimum-life
data

slope, st. dev. correlation st. dev.
ranking method m of slope coff, r of r

i/(N + 1) 1.086 0.068 0.9669 0.2858
(i− 0.5)/N 1.220 0.092 0.9522 0.3905
(i− 0.3)/(N + 0.4) 1.159 0.080 0.9599 0.3376

are still very high, although slightly lower than for the full data set. In this case, it
is the mean rank method which gives the lowest variance for the slope.

There appears to be no over-riding case for choosing any one of these ranking
relationships and we shall continue using the mean rank method that we have used
in the past.
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